metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shao-Min Shi and Zong-Qiu Hu*

College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: zqhu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.045 wR factor = 0.116 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis[(*E*)-2-(4-oxopentan-2-ylideneamino)benzoato-*κ*O]dipyridinemanganese(II)

The Mn atom in the title compound, $[Mn(C_{12}H_{13}NO_2)_2 + (C_5H_5N)_2(H_2O)_2]$, is coordinated by two pyridine heterocycles, two water molecules and an O-atom donor in two substituted benzoate groups, in an all-*trans* arrangement with the Mn atom on a center of inversion. The benzoate mean plane is inclined to the coordination plane formed by the four O atoms, with a dihedral angle of 43.4 (1)°. The dihedral angle between the planes of the benzene ring and the Schiff base is 49.5 (1)°.

Comment

The crystal structure and some properties of a substituted benzoate–manganese(II) complex were previously reported by Deng *et al.* (2006) and Xu & Xu (2004). We report here the synthesis and crystal structure of the new title complex, (I), $[Mn(C_{12}H_{13}NO_2)_2(py)_2(H_2O)_2]$, $C_{34}H_{36}MnN_4O_8$, (I), which forms a three-dimensional net structure stabilized by hydrogen-bonding interactions. In this compound, the Mn atom is six-coordinate and located on an inversion center. The coordination environment can be best described as distorted octahedral (Fig. 1). The hydroxyl O atoms of two of the substituted benzoate groups and the O atoms of two water molecules coordinate to the central Mn^{II} ion in the equatorial plane, with the two N atoms of the two pyridine molecules occupying the axial positions.

The Mn-O distances to O3 and O4 (Table 1) are shorter than those observed in the analogous compounds [Mn(C₈H₅O₃)₂(C₃H₄N₂)₂(H₂O)₂] [2.2180 (10) and 2.2210 (10) Å; Deng *et al.*, 2006] and [Mn(C₇H₄NO₄)₂-

© 2007 International Union of Crystallography All rights reserved Received 12 October 2006 Accepted 22 December 2006

Figure 1

A view of the title mononuclear complex, (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (a) 1 - x, -y, -z.]

Figure 2

A view of the crystal packing of (I), showing the hydrogen bonds as dashed lines.

 $(C_3H_4N_2)_2(H_2O)_2$] [2.2180 (13) and 2.2376 (12) Å; Xu & Xu, 2004]. The Mn1–N2 distance (Table 1) is much longer than the Mn–N distance in [Mn(C₈H₅O₃)₂(C₃H₄N₂)₂(H₂O)₂] [2.230 (2) Å; Deng *et al.*, 2006] and [Mn(C₇H₄NO₄)₂- $(C_3H_4N_2)_2(H_2O)_2$] [2.2127 (14) Å; Xu & Xu, 2004]. The angles, O3ⁱ–Mn1–O4ⁱ, O3ⁱ–Mn1–N2ⁱ, O4ⁱ–Mn1–N2ⁱ and O3ⁱ–Mn1–O4 [symmetry code as in Table 1], are 90.67 (5), 88.19 (5), 92.39 (6) and 89.33 (5)°, respectively. In the crystal structure, the molecules are stabilized by intramolecular and intermolecular C–H···O hydrogen bonds, forming a threedimensional net structure (Table 2, Fig. 2).

Experimental

To an ethanol solution (30 ml) of *o*-aminobenzoic acid (13.7 g, 0.1 mol), acetylacetone (10 g, 0.1 mol) was slowly added with

Z = 2

 $D_x = 1.333 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.44 \text{ mm}^{-1}$

T = 292 (2) K

 $\begin{array}{l} R_{\rm int}=0.052\\ \theta_{\rm max}=27.5^\circ\end{array}$

Block, colorless $0.24 \times 0.20 \times 0.15 \text{ mm}$

10543 measured reflections

3871 independent reflections 2776 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{bmatrix} Mn(C_{12}H_{13}NO_2)_2(C_3H_5N)_2(H_2O)_2 \end{bmatrix} \\ M_r = 683.61 \\ Monoclinic, P2_1/n \\ a = 9.9611 (7) Å \\ b = 14.5346 (10) Å \\ c = 12.5321 (8) Å \\ \beta = 110.109 (1)^{\circ} \\ V = 1703.8 (2) Å^3 \end{bmatrix}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: multi-scan (SADABS: Sheldrick, 1997)

(SADABS, Sheidnick, 1997) $T_{\rm min} = 0.901, T_{\rm max} = 0.957$

Refinement

Refinement on F^2	H atoms treated by a mixture of		
$R[F^2 > 2\sigma(F^2)] = 0.045$	independent and constrained		
$wR(F^2) = 0.116$	refinement		
S = 0.97	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2]$		
3871 reflections	where $P = (F_0^2 + 2F_c^2)/3$		
222 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$		
	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$		
	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$		

Table 1 Selected geometric parameters (Å, °).

Mn1–O3 ⁱ	2.1520 (13)	Mn1-O4 ⁱ	2.1958 (14)
Mn1-O3	2.1521 (13)	Mn1-N2 ⁱ	2.3093 (15)
Mn1-O4	2.1957 (14)	Mn1-N2	2.3093 (15)
O3 ⁱ -Mn1-O3	180	O4-Mn1-N2 ⁱ	87.61 (6)
O3 ⁱ -Mn1-O4	89.33 (5)	O4 ⁱ -Mn1-N2 ⁱ	92.39 (6)
O3-Mn1-O4	90.67 (5)	O3 ⁱ -Mn1-N2	91.81 (5)
O3 ⁱ -Mn1-O4 ⁱ	90.67 (5)	O3-Mn1-N2	88.19 (5)
$O3-Mn1-O4^{i}$	89.33 (5)	O4-Mn1-N2	92.39 (6)
O4-Mn1-O4 ⁱ	180	O4 ⁱ -Mn1-N2	87.61 (6)
O3 ⁱ -Mn1-N2 ⁱ	88.19 (5)	$N2^{i}-Mn1-N2$	180
O3-Mn1-N2 ⁱ	91.81 (5)		

Symmetry code: (i) -x + 1, -y, -z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 04 - H4A \cdots 02^{i} \\ C16 - H16 \cdots 01^{ii} \\ C5 - H5 \cdots 02^{iii} \\ 04 - H4B \cdots 01 \end{array}$	0.82 (2) 0.93 0.93 0.82 (2)	1.881 (12) 2.58 2.55 1.879 (11)	2.669 (2) 3.287 (3) 3.470 (3) 2.674 (2)	162 (3) 133 169 164 (3)
Symmetry codes: $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x + 1$, -y, -z; (ii)	$x - \frac{1}{2}, -y + \frac{1}{2},$	$z - \frac{1}{2};$ (iii)

After their location in a difference map, all atoms attached to C were positioned geometrically and allowed to ride on the parent C atoms with C–H distances between 0.93 and 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms. The water H atoms were restrained to an O–H distance of 0.82 (2) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

This work was supported by Hubei Education Government of China (grant No. 20040131).

References

- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, Z.-P., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2106-m2107.
- Sheldrick, G. M. (1997). SADABS, SHELXS97, and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Xu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1462-m1464.